Multi-Scale Denoising in the Feature Space for Low-Light Instance Segmentation

Nantheera Anantrasirichai ¹ David Bull ¹ Joanne Lin¹

¹Visual Information Laboratory, University of Bristol

Introduction

Low-light images are heavily affected by noise from a low photon count in darker conditions, making the task much more challenging. Common approaches include applying a pre-processing step first to enhance the image, before passing into existing methods.

We propose our "plug-and-play" weighted non-local blocks (wNLB) into backbones of architectures for an end-to-end low-light instance segmentation method.

Proposed Method We build upon the existing non-local blocks (NLB) [1] by adding a learnable parameter w. This allows the network to control the level of feature denoising at different scales, as seen in Fig. 1.

Our wNLBs computes the following:

$$\mathbf{z} = wW_z\mathbf{y} + (1-w)\mathbf{x}$$

where \mathbf{x} is the input feature map, \mathbf{y} is the output from the NL means operation, W_z is the weight matrix from the 1 \times 1 convolutional layer after the NL means operation and z is the output. This is shown in Fig. 2.

Figure 1. Generic architecture showing our proposed weighted non-local blocks added into the backbone to remove noise in the feature space. Blue blocks indicate convolutional layers.

Figure 2. Our proposed weighted non-local block (wNLB) for feature denoising with learnable weight w.

Quantitative Results

Table 1. Comparison of instance segmentation methods on the synthetic low-light COCO minival dataset

Method		AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
Mask R-CNN	Pre-trained	6.9	12.4	6.9	2.3	7.4	12.4
Mask R-CNN	Finetuned	15.9	28.6	15.6	4.8	15.8	27.8
Mask R-CNN	NLB	16.6	30.3	16.4	5.4	16.7	28.1
Mask R-CNN	WNLB	16.9	30.7	16.6	5.6	17.2	28.9
YOLOv8	Pre-trained	6.3	11.1	6.3	1.8	6.8	10.7
YOLOv8	Finetuned	14.3	25.6	14.3	4.0	14.0	24.1
YOLOv8	NLB	22.1	37.6	22.2	7.4	23.1	36.6
YOLOv8	WNLB	22.0	37.5	22.1	7.4	23.2	36.5
SOLOv2	Pre-trained	8.2	14.1	8.3	2.7	8.6	14.1
SOLOv2	Finetuned	15.0	26.5	14.9	3.9	15.0	26.5
SOLOv2	NLB	15.8	27.9	15.6	4.1	15.8	27.6
SOLOv2	WNLB	15.8	27.9	15.8	4.1	15.7	27.8

Table 2. Comparison of two-stage methods on the synthetic low-light COCO minival dataset

Method	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
EnlightenGAN	5.5	10.0	5.5	1.7	6.1	10.0
ZeroDCE++	5.6	10.0	5.6	1.8	6.1	9.6
AGLLNet	6.1	11.0	6.1	1.8	7.2	10.5
RetinexFormer	5.7	10.3	5.7	1.8	6.5	9.9
Ours	16.9	30.7	16.6	5.6	17.2	28.9

Normal Light

Finetuned

Figure 3. Visual comparison of our proposed method against the finetuned method using the Mask R-CNN [2] architecture on real low-light data from the BVI-RLV Video dataset [3].

Ours

Figure 4. Visual comparison of our proposed method against pre-trained and finetuned Mask R-CNN [2] models, along with the ground truth, for cases of varying levels of difficulty.

Figure 5. Visual comparison of our proposed method against two-stage methods (enhanced first then passed through a pre-trained model) using Mask R-CNN [2] as the detector.

- *Computer Vision (ICCV)*, 2017, pp. 2980–2988.
- 2024.

Finetuned

References

[1] X. Wang, R. Girshick, A. Gupta, and K. He, "Non-local neural networks," in *Proceedings of the IEEE* Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

[2] K. He, G. Gkioxari, P. Dollár, and R. Girshick, "Mask r-cnn," in 2017 IEEE International Conference on

[3] R. Lin, N. Anantrasirichai, G. Huang, J. Lin, Q. Sun, A. Malyugina, and D. Bull, "BVI-RLV: A fully registered dataset and benchmarks for low-light video enhancement," arXiv preprint arXiv:2407.03535,