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Introduction

Low-light images are heavily affected by noise from a low photon count
in darker conditions, making the task much more challenging. Common
approaches include applying a pre-processing step first to enhance the
Image, before passing into existing methods.

We propose our "plug-and-play” weighted non-local blocks (wNLB) into
backbones of architectures for an end-to-end low-light instance segmen-
tation method.

Proposed Method

We build upon the existing non-local blocks (NLB) [1] by adding a learn-
able parameter w. This allows the network to control the level of feature
denoising at different scales, as seen in Fig. 1.

Our wNLBs computes the following:
z =wW,y + (1 —w)x (1)

where x Is the input feature map, y is the output from the NL means
operation, W. is the weight matrix from the 1 x1 convolutional layer after
the NL means operation and z is the output. This is shown in Fig. 2.
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Figure 1. Generic architecture showing our proposed weighted non-local blocks
added into the backbone to remove noise in the feature space. Blue blocks
indicate convolutional layers.
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Figure 2. Our proposed weighted non-local block (wNLB) for feature denoising
with learnable weight w.

Quantitative Results

Table 1. Comparison of instance segmentation methods on the synthetic
low-light COCO minival dataset

Vethod AP AP:y AP AP¢ AP, AP,
Mask R-CNN Pre-trained 6.9 124 69 2.3 /7.4 124
Vask R-CNN Finetuned 15.9 28.6 15.6 4.8 158 2/.8
Mask R-CNN NLB 16.6 30.3 164 54 16.7 28.1
Mask R-CNN wNLB 16.9 30.7 16.6 5.6 1/.2 28.9
YOLOVSE Pre-trained 6.3 11.1 6.3 1.8 6.8 10.7
YOLOVS -inetuned 14.3 25.6 14.3 4.0 14.0 24.1
YOLOVS N LB 22.1 37.6 22.2 7.4 23.1 36.6
YOLOVS WNLB 2203/.5221 74 23.2 36.5
SOLOvVZ Pre-trained 8.2 141 83 2.7 8.6 14.1
SOLOvV2 -inetuned 15.0 26.5 14.9 3.9 15.0 26.5
SOLOV? N LB 158 27.9 156 4.1 15.8 2/.6
SOLOV? WNLB 158 27.9 158 4.1 15.7 27.8

Table 2. Comparison of two-stage methods on the synthetic low-light COCO

minival dataset

Method

AP  APsqy APz APg APy AP

ZeroDCE++
AGLLNet
RetinexFormer 5.7/

ours

-nlightenGAN 5.5 10.0 55 1.7 6.1 10.0
56 100 5.6 1.8 6.1 96
6.1 11.0 6.1 1.8 /.2 105
10.3 5.7 1.8 65 99

16.9 30.7 16.6 5.6 17.2 28.9

Qualitative assessment on a real low-light dataset
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Figure 3. Visual comparison of our proposed method against the finetuned
method using the Mask R-CNN [2] architecture on real low-light data from the

Finetuned

BVI-RLV Video dataset [3].
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Figure 4. Visual comparison of our proposed method against pre-trained and
finetuned Mask R-CNN [2] models, along with the ground truth, for cases of
varying levels of difficulty.
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Figure 5. Visual comparison of our proposed method against two-stage methods
(enhanced first then passed through a pre-trained model) using Mask R-CNN [2]
as the detector.
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